

Alternatives to
Phosphorus Treatment
in Food Processing
Wastewaters

Presented by
Aimee Matthys
and
Michael Hillebrenner

December 4, 2013

Presentation Outline

- Phosphorus in Food Processing Waters
- Regulations
- Treatment Alternatives
- Case Study: Del Monte Facility in MN

Phosphorus

- Phosphorus an essential nutrient required for proper cell functioning, regulation of calcium, strong bones and teeth, and for making ATP.
- Phosphorus is found in almost every food
 - Dairy Products, Meat, and Fish are high in P
 - Polyphosphate food additives including soft drinks (phosphoric acid)

Top 10 Foods Highest in Phosphorus

#1: Seeds (Pumpkin)

#2: Spices (Ground Mustard Seed)

#3: Cheese (Parmesan)

#4: Nuts (Brazil)

#5: Cocoa Powder

#6: Edamame (Soybeans)

#7: Baker's Yeast

#8: Bacon

#9: Liver (Beef)

#10: Canned Sardines

References

- 1. USDA National Nutrient Database for Standard Reference, Release 25.
- Linus Pauling Institute on Phosphorus
- 3. University of Maryland Medical Center Article on Phosphorus
- 4. National Research Council, Food and Nutrition Board. Recommended Dietary Allowances. 10th ed. Washington, D.C.: National Academy Press; 1989:184-187.

Phosphorus Enters Wastewater

- Cleaning production lines
- Scraping food preparation vats
- Cleaning and rinsing equipment
- Disposing of product to the drain, and
- Floor cleaning chemicals

Key: Identify your sources

Why Do We Care?

- Why is Phosphorus regulated?
- What happens when Phosphorus gets into receiving streams?
- How is Phosphorus regulated?
 - Standard Effluent Limitations
 - TMDL

Phosphorus TMDL

 Phosphorus TMDLs are being developed across the nation.

 Wisconsin tightening Phosphorus TMDL regulations for point source discharges in order to reach 75 - 100 ppb

Treatment Alternatives

- Reduce Source
 - BMP implementation
- Physical:
 - filtration for particulate phosphorus
 - membrane technologies
- Ochemical:
 - precipitation
 - physical-chemical adsorption
- Biological
 - assimilation
 - enhanced biological phosphorus removal (EBPR)

Chemical Precipitation

- Widely used method for phosphorus treatment
 - Chemical Compounds Calcium, Aluminum and Iron
- Challenges:
 - Chemical costs
 - Solids Management

Physical Chemical Adsorption

- Removes dissolved Phosphorous, not just a physical filtration process
- Media Selection and HRT are critical
- Challenges:
 - Competing Constituents
 - TSS levels

Natural Media Filtration (NMF)

The use of natural materials to filter, adsorb and sequester contaminants from groundwater, process water, and/or stormwater.

- Media Types
 - Compost
 - Sand
 - Gravel
 - Peat
- Removal Mechanisms
 - Filtration
 - Adsorption
 - Ion Exchange
 - Precipitation
 - Decomposition
 - Microbial Metabolism

NMF Schematic

NMF in Indiana

NMF in Virginia

Media Selection

Why Bauxite Residue?

 Red Mud or Bauxite Residue is a solid waste of aluminum manufacturing process

- Patents
- Iron content of Bauxite aids in chemical adsorption

Facility

- Processing and Canning of Peas and Corn
- Seasonal Production April to November
- High Strength Organic Wastewater
- Process Water Generation
 - Vegetable processing and clean-up water
 - Boiler blow-down and cooling water
 - Non-contact cooling water
 - Storm Water Runoff
- Sanitary wastewater is routed to City of Sleepy Eye WWTF
- Fluctuating Flows
 - Max Daily Flow June to November 250,000 gpd
 - Max Daily Flow April & May 650,000 gpd

Existing Wastewater Treatment Process

Surface Water Discharge

Outfall SD001
Ditch No. 30

Site Challenges

- Algal growth in Settling Ponds 3 and 4
- High TSS levels that are difficult to settle
- Fluctuating flows and concentrations
- Flows routinely recycled and stored to meet discharge limits

Focused Constituents of Concern NPDES Permit MN0001171

- Nitrogen, Ammonia
 - 19.4 mg/L (Apr-May), 6.4 mg/L (Jun-Sep), 32.5 mg/L (Oct-Nov)
- BOD
 - 25.0 mg/L (Apr-May), 15 mg/L (Jun-Nov) monthly ave
 - 37.5 mg/L (Apr-May), 22.5 mg/L (Jun-Nov) daily max
- Total Suspended Solids (TSS)
 - 45 mg/L month ave, 67.5 daily max
- Phosphorus
 - Mass limit 5 month 967 kg

Project Objectives

Phosphorus Treatment

- Reduction of chemical use / elimination of DAF units for colloidal particle and phosphorous control
- Final Discharge: Meet NPDES discharge limits BOD, Ammonia, TSS, Phosphorous

Proof of Technology: Pilots

Bench Scale

Small Field

Large Field

Bench Scale Pilot Study

- Step 1: Complete water quality analysis
 - Identify any competing constituents
- Step 2: Batch Study
 - Isotherm Adsorption Capacity / Rate of Reaction
- Step 3: Column Study
 - Evaluate longevity of media
- Step 4: Application System Sizing

Bauxite Batch Isotherm Study

- 5 batch tests in duplicate
- Water volume constant, Bauxite volume varied
- Neutral and Acidic pH ranges tested
- 2 hr., 4 hr., 6 hr. and 24 hr. HRT evaluated

Study Results

- Successful Phosphorus removal
 - Initial: Total PO4 = 78 mg/L
 - After Filtration: PO4 = 53 mg/L
 - Max removal: 99% reduction to 0.6 to 1.4 mg/L
- HRT 4 hours to reach equilibrium
- Adjusted pH of solution increased Phosphorus removal

Additional Bench Testing

- 2 Stage Column Study
 - 2 and 6 inch diameter column, 24 inches high
 - Flow rate between 2.0 and 10 mL/min
 - Test Length ~ 10 days

Field Pilot

- Considerations:
 - TSS & BOD removal before NMF
 - Integration of NMF into existing system

Bauxite Field Pilot System and Full Scale System Sizing and Costs

- Bauxite Field Pilot System treating up to 5,000 gpd installed < \$75,000
- Full Scale System treating up to 250,000 gpd installed ~ \$400,000 - \$600,000

Conclusions

- Phosphorus treatment is important, regulations are becoming more stringent
- Source identification is essential

- Economical treatment alternatives do exist to meet discharge requirements
 - Natural Media Filtration

For More Information Contact:

Michael Hillebrenner 630.572.3300

Amanda Ludlow 631.232.2600